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ABSTRACT

We develop a novel geometric multiresolution analysis for
analyzing intrinsically low-dimensional point clouds in high-
dimensional spaces, modeled as samples from ad-dimensional
setM (in particular, a manifold) embedded inR

D, in the regime
d ≪ D. This type of situation has been recognized as important
in various applications, such as the analysis of sounds, images,
and gene arrays. In this paper we construct data-dependent mul-
tiscale dictionaries that aim at efficient encoding and manipulat-
ing of the data. Unlike existing constructions, our construction
is fast, and so are the algorithms that map data points to dictio-
nary coefficients and vice versa. In addition, data points have a
guaranteed sparsity in terms of the dictionary.

Keywords— Data Sets. Point Clouds. Wavelets. Dictionary
Learning. Multiscale Analysis. Sparse Approximation.

1. INTRODUCTION

Data sets are often modeled as point clouds inR
D, for D large,

but having some interesting low-dimensional structure, for ex-
ample that of ad-dimensional manifoldM, with d ≪ D. When
M is simply a linear subspace, one may exploit this assump-
tion for encoding efficiently the data by projecting onto a dictio-
nary ofd vectors inR

D (for example found by SVD), at a cost
(n + D)d for n data points. WhenM is nonlinear, there are
no “explicit” constructions of dictionaries that achieve asim-
ilar efficiency: typically one uses either random dictionaries,
or dictionaries obtained by black-box optimization. This type
of situation has been recognized as important in various appli-
cations, ranging from the analysis of sounds, images (RGB or
hyperspectral), to gene arrays, EEG signals, and other types of
manifold-valued data, and has been at the center of much inves-
tigation in the applied mathematics [4] and machine learning
communities during the past several years.

We formalize this approach by requesting to find a dictionary
Φ of sizeI, using training data, such that every point (at least
from the training data set) may be represented, up to a certain
precisionǫ, by at mostm elements of the dictionary. This re-
quirement of sparsity of the representation is very naturalfrom
the point of statistics, signal processing, and interpretation of
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the representation. Of course, the smallerI andm are, for a
givenǫ, the better the dictionary.

Current constructions of these dictionaries such as K-
SVD [1] , k-flats [8] and others have several deficiencies. First,
they cast the requirements above as an optimization problem,
with many local minima, and for iterative algorithms littleis
known about their computational complexity. Second, no guar-
antees are provided about the size ofI, m (as a function of
ǫ). Lastly, the dictionaries found are in general highly over-
complete and unstructured. As a consequence, there is no fast
algorithm for computing the coefficients of the representation
of a data point in the dictionary, thus requiring appropriate
sparsity-seeking algorithms.

In this paper we construct data-dependent dictionaries based
on a multiresolution geometric analysis of the data, inspired by
multiscale techniques in geometric measure theory [5]. These
dictionaries are structured in a multiscale fashion; they can be
computed efficiently; the expansion of a data point on the dictio-
nary elements is guaranteed to have a certain degree of sparsity
m, and may be computed by a fast algorithm; the growth of
the number of dictionary elementsI as a function ofǫ is con-
trolled theoretically, and easy to estimate in practice. Wecall
the elements of these dictionariesgeometric wavelets, since in
some aspects they generalize wavelets from vectors that analyze
functions to affine vectors that analyze point clouds.

2. MULTISCALE GEOMETRIC WAVELETS

Let (M, g, µ) be a compact Riemannian manifold of dimension
d isometrically embedded inRD (with d ≪ D) and endowed
with the natural volume measure. Our construction consistsof
three steps: First, we perform a nested geometric decomposi-
tion of M into dyadic cubes at a total ofJ scales, arranged
in a tree. Second, we obtain ad-dimensional affine approxima-
tion in each cube, generating a sequence of piecewise linearsets
Mj , j ≤ J approximating the manifold. Lastly, we construct
low-dimensional affine difference operators that efficiently en-
code the differences betweenMj andMj+1.

This construction parallels, in a geometric setting, that of
classical multiscale wavelet analysis, and we therefore call it a
Geometric Wavelets MultiResolution Analysis (GWMRA). We
show that whenM is a smooth manifold, guarantees on the ap-
proximation rates ofM in terms of theMj are easily derived.
We construct bases for the various affine operators involved,
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Fig. 1. Construction of geometric wavelets (figure by E. Monson).

producing a hierarchically organized dictionary that is adapted
to the data, which we expect to be useful in many applications.
Finally, efficient algorithms exist for computing both the multi-
scale structure above and the geometric wavelet transform and
its inverse. Such efficient algorithms are currently not available
for any of the algorithms in the dictionary-learning community.

Multiscale cubes. For anyx ∈ M andr > 0, we useBr(x) to
denote the ball in the manifoldM of radiusr centered atx. We
start by a spatial multiscale decomposition ofM into dyadic
cubes,{Cj,k}k∈Γj ,j∈Z, which are open sets inM such that

(i) for everyj ∈ Z, µ(M\∪k∈Γj
Cj,k) = 0;

(ii) for j′ ≥ j eitherCj′,k′ ⊆ Cj,k or µ(Cj,k ∩ Cj′,k′) = 0;
(iii) for any j < j′ andk′ ∈ Γj′ , there exists a uniquek ∈ Γj

such thatCj′,k′ ⊆ Cj,k;
(iv) eachCj,k contains a pointcj,k, called center ofCj,k,

such thatBc1·2−j (cj,k) ⊆ Cj,k ⊆ Bmin{c2·2−j ,diam(M)}(cj,k) ,

for fixed constantsc1, c2 depending on intrinsic geometric prop-
erties ofM. In particular, we haveµ(Cj,k) ∼ 2−dj;

(v) the boundary of eachCj,k is piecewise smooth.

The construction of such dyadic cubes is possible on rather
general spaces [5]. The family of dyadic cubes at scalej gener-
ates aσ-algebraFj. Functions measurable with respect to this
σ-algebra are piecewise constant on each cube.

The properties above imply that there is a natural tree struc-
tureT associated to the family of dyadic cubes: for any(j, k),
we let children(j, k) = {k′ ∈ Γj+1 : Cj+1,k′ ⊆ Cj,k}. Note
thatCj,k is the disjoint union of its children. For everyx ∈ M,
with abuse of notation we let(j, x) be the uniquek(x) ∈ Γj

such thatx ∈ Cj,k(x). We assumeµ(M) ∼ 1 so that there is
only one dyadic cube at the root of the tree (thus we will only
considerj ≥ 0).

Multiscale singular value decompositions (MSVD). The tools
we build upon are classical in multiscale geometric measurethe-
ory [5], especially in its intersection with harmonic analysis. An
introduction to these with an application to estimation of intrin-
sic dimension of point clouds is in [7] and references therein.

We start with some geometric objects that are associated to

the dyadic cubes. For eachCj,k we define the mean

cj,k := Eµ[x|x ∈ Cj,x] =
1

µ(Cj,k)

∫
Cj,k

xdµ(x), (2.1)

and the covariance operator restricted toCj,k,

covj,k = Eµ[(x − cj,k)(x − cj,k)∗|x ∈ Cj,k]. (2.2)

Let the rank-d Singular Value Decomposition (SVD) be

covj,k ≈ Φj,kΣj,kΦ∗
j,k, (2.3)

and define the approximate local tangent space

Vj,k := Vj,k + cj,k, Vj,k = 〈Φj,k〉 , (2.4)

where〈Φj,k〉 denotes the span of the columns ofΦj,k, so that
Vj,k is the affine subspace of dimensiond parallel toVj,k and
passing throughcj,k. We think of{Φj,k}k∈Γj

as the geometric
analogue of scaling functions at scalej. Let Pj,k be the associ-
ated affine projection ontoVj,k: for anyx ∈ Cj,k,

Pj,k(x) := Pj,k · (x − cj,k) + cj,k, Pj,k = Φj,kΦ∗
j,k, (2.5)

and define a coarse approximation ofM at scalej,

Mj := ∪k∈Γj
Pj,k(Cj,k), (2.6)

which is the geometric analogue to what the projection of a
function onto a scaling function subspace is in wavelet theory.
Note that eachPj,k(Cj,k) is the bestd-dimensional planar ap-
proximation toCj,k (in the least squares sense), which differs
from the construction in [3].
Multiscale geometric wavelets. We introduce our wavelet en-
coding of the difference betweenMj andMj+1, for j ≥ 0. It
is natural to define

xj ≡ PMj
(x) := Pj,k(x), x ∈ Cj,k, ∀(j, k). (2.7)

Again, note the difference betweenxj and its equivalent in [3].
Fix x ∈ Cj+1,k′ ⊂ Cj,k. The differencexj+1 − xj is a high-
dimensional vector inRD, however it may be decomposed into
a sum of vectors in certain well-chosen low-dimensional spaces,
shared across multiple points, in a multiscale fashion. We pro-
ceed as follows: forj ≤ J − 1 we let

QMj+1
(x) := PMj+1

(x) − PMj
(x)

= xj+1 − Pj,k(xj+1) + Pj,k(xj+1) − Pj,k(x)

= (I − Pj,k)(xj+1 − cj,k) + Pj,k(xj+1 − x). (2.8)

Define the wavelet subspace and translation as

Wj+1,k′ := (I − Pj,k)Vj+1,k′ ; (2.9)

wj+1,k′ := (I − Pj,k)(cj+1,k′ − cj,k). (2.10)

ClearlydimWj+1,k′ ≤ dimVj+1,k′ = d. LetΨj+1,k′ be an or-
thonormal basis forWj+1,k′ which we call a geometric wavelet
basis (see Fig. 1). Then we may rewrite (2.8) as

QMj+1
(x) = Ψj+1,k′Ψ∗

j+1,k′(xj+1 − cj+1,k′) + wj+1,k′

− Φj,kΦ∗
j,k(x − xj+1). (2.11)



GWMRA = GeometricWaveletsMRA (X, d, ǫ)

// Input:
// X: a set ofn samples fromM⊂ R

D

// d: a dimension
// ǫ: a precision parameter

// Output:
// A treeT of dyadic cubes{Cj,k}, with local means{cj,k} and
SVD bases{Φj,k}, as well as a family of geometric wavelets
{Ψj,k}, {wj,k}

Construct a treeT of dyadic cubes{Cj,k} with centers{cj,k}.
J ← finest scale with theǫ-approximation property.
Let covJ,k = |CJ,k|

−1
P

x∈CJ,k
(x− cJ,k)(x− cJ,k)∗, and com-

pute rank-d SVD(covJ,k) ≈ ΦJ,kΣJ,kΦ∗
J,k, for all k ∈ ΓJ .

for j = J − 1 down to 0

for k ∈ Γj

Computecovj,k andΦj,k as above

For eachk′ ∈ children(j, k), construct the wavelet
basisΨj+1,k′ and translationwj+1,k′

end

end
SetΨ0,k := Φ0,k andw0,k := c0,k for k ∈ Γ0.

Fig. 2. Pseudocode for the construction of geometric wavelets

The last termx − xj+1 can be closely approximated byxJ −

xj+1 =
∑J−1

l=j+1 QMl+1
(x) as the finest scaleJ → +∞, under

general conditions. This equation splits the differencexj+1 −
xj into a component inWj+1,k′ , a translation term that only
depends on(j, k) and lies in the orthogonal complement ofVj,k

in R
D but not necessarily inWj+1,k′ , and a projection ontoVj,k

of a sum of differencesxl+1 − xl at finer scales.
The two-scale relationship, by definition ofQMj+1

,

PMj+1
(x) = PMj

(x) + QMj+1
(x), (2.12)

may be iterated across scales:

x = PMj
(x) +

J−1∑
l=j

QMl+1
(x) + (x − PMJ

(x)) . (2.13)

The above equations allow to efficiently decompose each step
along low-dimensional subspaces, leading to an efficient en-
coding algorithm (see Fig. 2). We have therefore constructed
a multiscale family of projection operatorsPMj

(one for each
nodeCj,k) onto approximate local tangent planes and detail pro-
jection operatorsQMj+1

(one for each edge) encoding the dif-
ferences, collectively referred to as a GWMRA structure. The
cost of encoding the GWMRA structure is dominated by that of
the scaling functions{Φj,k}, which isO(dDǫ−

d
2 ), and the time

complexity of the algorithm isO(Dn log(n)) [2].

Theorem 2.1(Geometric Wavelet Decomposition). Let (M, g)
be a C2 manifold of dimension d in R

D. Let {PMj
, QMj+1

} be
a GWMRA. For any x ∈ M, there exists a constant C = C(x)

{qj,x} =FGWT(GWMRA, x)

// Input: GWMRA structure,x ∈ M
// Output: A sequence{qj,x} of wavelet coefficients

for j = J down to 0

qj,x = (Ψ∗
j,xΦj,x) Φ∗

j,x(x− cj,x)

end

x =IGWT(GWMRA,{qj,x})

// Input: GWMRA structure, wavelet coefficients{qj,x}
// Output: Reconstructionx at scaleJ

QMJ
(x) = ΨJ,xqJ,x + wJ,x

for j = J − 1 down to 1

QMj
(x) = Ψj,xqj,x + wj,x − Pj−1,x

P

ℓ>j
QMℓ

(x)

end
x = Ψ0,xq0,x + w0,x +

P

j>0
QMj

(x)

Fig. 3. Pseudocodes for the Forward and Inverse GWTs

and a scale j0 = j0(reach(B1(x))), such that for any j ≥ j0,

‖x − PMj0
(x) −

j∑
l=j0+1

QMl
(x)‖ ≤ C · 2−2j. (2.14)

Geometric Wavelet Transforms (GWT). Given a GWMRA
structure, we may compute a discrete Forward GWT for a point
x ∈ M that maps it to a sequence of wavelet coefficient vectors:

qx = (qJ,x, qJ−1,x, . . . , q1,x, q0,x) ∈ R
d+

P

J
j=1

dw
j,x (2.15)

whereqj,x := Ψ∗
j,x(xj − cj,x), anddw

j,x := rank(Ψj,x) ≤ d.
Note that, for a fixed precisionǫ > 0, qx has a maximum pos-
sible length(1 + 1

2 log2
1
ǫ
)d, which is independent ofD and

nearly optimal ind [3]. On the other hand, we may easily re-
construct the pointx at all scales using the GWMRA structure
and the wavelet coefficients, by a discrete Inverse GWT (Fig.3
displays the pseudocodes for both transforms).

3. A TOY DATASET

We consider a toy example of a2-dimensionalswissroll mani-
fold in R

100 and apply the algorithm to the sampled data (6000
points, without noise) in Fig. 4. The resulting wavelet coef-
ficients matrix is very sparse (with about 40% of the coeffi-
cients below 1 percent of the maximum magnitude). The recon-
structed manifolds also approximate the original manifoldwell,
with the errors decreasing quadratically with respect to scale.

4. VARIATIONS AND OPTIMIZATIONS

We presented a plain construction of the geometric waveletsfor
the data sampled from a manifold of known dimensiond. We
mention several variations and optimizations, aimed at reducing
the cost of encoding the geometric wavelet dictionary and/or
speeding up the decay of the wavelet coefficients [2, 3].
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Fig. 4. Top: Reconstructions of aswissroll at scales 4 (left) and 8
(right), using6000 random samples, by the geometric wavelets. Bot-
tom left: matrix of wavelet coefficients. Thex-axis indexes the points
(arranged according to the tree), and they axis indexes the scales from
coarse (top) to fine (bottom). Note that each block corresponds to a
different subset of wavelet bases. Bottom right: reconstruction errors
as a function of scale (both inlog10 scale).

Locally adaptive dimensions[2]. Currently we use the same
dimensiond everywhere in the tree when constructing geomet-
ric scaling functions for data sampled from ad-dimensional
manifold. We may use local dimensionsdj,k that are adapted
to the cubesCj,k, extending the construction to any point cloud
(see Fig. 5).

Orthogonal geometric wavelets [2]. Neither the vectors
QMj+1

(x), nor any of the terms that comprise them, are in gen-
eral orthogonal across scales. On one hand, this is natural since
M is nonlinear; on the other hand, theQMj+1

(x) may be al-
most parallel across scales or, the subspacesWj+1,k′ may share
directions across scales. We may then more efficiently encode
the dictionary by not encoding twice shared directions, leading
to orthogonal geometric wavelets.

Splitting of the wavelet subspaceWj+1,k′ [3]. We may split
Wj+1,k′ into a part that depends only on(j, k) and another
on (j + 1, k′) by definingW∩

j,k := ∩k′∈children(j,k)Wj+1,k′

and lettingW⊥
j+1,k′ be the orthogonal complement ofW∩

j,k in
Wj+1,k′ , so that we only need to encodeW∩

j,k once for all chil-
dren. This is particularly efficient for encoding the wavelet dic-
tionary whendim(W∩

j,k) is large relative to alldim (Wj+1,k′ ).

A fine-to-coarse strategy without tangential corrections[3].
In this variation, we can remove the tangential term in (2.11) by
using the sequencẽxj = Pj,x(x̃j+1), for j < J , andx̃J := xJ ,
instead of the previous onexj = Pj,x(x), so that we do not need
to encode the scaling functions{Φj,k} (see [3] for details).

Pruning of the geometric wavelet tree[2]. Even with the
above techniques, our construction of the tree is still not opti-
mal. One may consider pruning the tree to minimize the overall
encoding cost. See Fig. 6 for an illustration.
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