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ABSTRACT the representation. Of course, the smalleandm are, for a
) i i , givene, the better the dictionary.
we de_velqp a r}ovel geometric multlresqlutmn a“"’!'.ys's for Current constructions of these dictionaries such as K-
Srn?g;?(?ng;tg;;&asllyﬁ:g‘(’jvé?e'rgzzss'gﬁgIgg'ﬂ;&f&iﬂgﬁgél SVD [ , k-flats [B]. and others have several d_efi_ciepcies. First,
’ they cast the requirements above as an optimization prgblem
with many local minima, and for iterative algorithms littie
r\Enown about their computational complexity. Second, na-gua
antees are provided about the sizelofn (as a function of
€). Lastly, the dictionaries found are in general highly ever
complete and unstructured. As a consequence, there is ho fas
algorithm for computing the coefficients of the represeaiat
of a data point in the dictionary, thus requiring approriat
sparsity-seeking algorithms.
In this paper we construct data-dependent dictionariesthas
Keywords— Data Sets. Point Clouds. Wavelets. Dictionary on a multiresolution geometric analysis of the data, ireplyy
Learning. Multiscale Analysis. Sparse Approximation. multiscale techniques in geometric measure thedry [5].s&he
dictionaries are structured in a multiscale fashion; thay e
computed efficiently; the expansion of a data point on théadic
nary elements is guaranteed to have a certain degree oftgpars

Data sets are often modeled as point cloud®’h for D large, m, and may be.cqmputed by a fast aIgonth_m; the. growth of
the number of dictionary elemenisas a function ot is con-

but having some interesting low-dimensional structure efo trolled theoretically, and easy to estimate in practice. Ak

ample t_hat of ai-FjlmenS|onaI manifoloMt, with d < D.-When the elements of these dictionarigsometric wavelets, since in
M is simply a linear subspace, one may exploit this assump-

. : o - " some aspects they generalize wavelets from vectors thigzana

tion for encoding efficiently the data by projecting onto etith- functions?to affineyvgectors that analyze point clouds

nary ofd vectors inR” (for example found by SVD), at a cost '

(n + D)d for n data points. WhepM is nonlinear, there are

no “explicit” constructions of dictionaries that achievesien- 2 MULTISCALE GEOMETRIC WAVELETS

ilar efficiency: typically one uses either random dictideay

of situation has been recognized as important in variou§-app ; jsometrically embedded iR (with d < D) and endowed

cations, ranging from the analysis of sounds, images (RGB qjjith the natural volume measure. Our construction consists

hyperspectral), to gene arrays, EEG signals, and othestype three steps: First, we perform a nested geometric decomposi

manifold-valued data, and has been at the center of muck-inveion of A1 into dyadic cubes at a total of scales, arranged

tigation in the applied mathematids [4] and machine legnin i, a tree. Second, we obtainiadimensional affine approxima-

communities during the past several years. ~ tionin each cube, generating a sequence of piecewise ketsr
We formalize this approach by requesting to find a dictionaryr; j < J approximating the manifold. Lastly, we construct

® of size, using training data, such that every point (at leasow-dimensional affine difference operators that effidieen-

from the training data set) may be represented, up to a nertaggde the differences betwegl; and M, ;.

precisione, by at mostn elements of the dictionary. This re-  This construction parallels, in a geometric setting, that o

quirement of sparsity of the representation is very natiwea  ¢|assical multiscale wavelet analysis, and we therefoltétca

the point of statistics, signal processing, and interpi@iof  Geometric Wavelets MultiResolution Analysis (GWMRA). We
The authors thank E. Monson for useful discussions. MM isefué for Sho"Y tha.t when\is a S.mOOth manifold, guarantges on .the ap-

partial support from NSF, ONR, and the Sloan Foundation. G partially ~ Proximation rates of\1 in terms Qf thE/\/l].- are easily de'.‘|Ved-

supported by ONR N00014-07-1-0625 and NSF CCF 0808847. We construct bases for the various affine operators involved

in various applications, such as the analysis of soundgésa
and gene arrays. In this paper we construct data-dependéntm
tiscale dictionaries that aim at efficient encoding and imalait-
ing of the data. Unlike existing constructions, our conginn

is fast, and so are the algorithms that map data points tmdict
nary coefficients and vice versa. In addition, data pointe za
guaranteed sparsity in terms of the dictionary.

1. INTRODUCTION
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Fig. 1. Construction of geometric wavelets (figure by E. Monson).

producing a hierarchically organized dictionary that isateéd
to the data, which we expect to be useful in many application
Finally, efficient algorithms exist for computing both theilti

scale structure above and the geometric wavelet transfodn a

its inverse. Such efficient algorithms are currently noilazée
for any of the algorithms in the dictionary-learning comntun

Multiscale cubes For anyz € M andr > 0, we useB,(x) to
denote the ball in the manifol& of radiusr centered ai:. We
start by a spatial multiscale decomposition./ef into dyadic
cubes{C}r}rer, jez, Which are open sets iv such that

(i) for every; € Z, (M \ Urer, Cjx) = 0;

(II) for j/ > eitherOj/_,k/ - Oj_’k Or,LL(Oj_’k N Oj/_’k/) =0;

(iii) forany j < j"andk’ € T'j/, there exists a uniquec T';
such thaCj@k/ C Cj ks

(iv) eachC;; contains a point; j, called center o} ;,
such thatB,., .2-i (¢j.x) € Cjk € Bumin{es-2-7,diam(AM)} (Cok) »
for fixed constants; , co depending on intrinsic geometric prop-
erties of M. In particular, we have(C; ) ~ 2-%;

(v) the boundary of eacty; ;, is piecewise smooth.

The construction of such dyadic cubes is possible on ratheq

general spaceBI[5]. The family of dyadic cubes at s¢alener-

ates as-algebraZ;. Functions measurable with respect to this

o-algebra are piecewise constant on each cube.

The properties above imply that there is a natural tree struc

ture7 associated to the family of dyadic cubes: for dpiyk),
we let Children(j, k) = {k/ € Fj+1 : Cj+1,7€’ - Cj,k}' Note
thatC} i, is the disjoint union of its children. For everye M,
with abuse of notation we I€tj, ) be the uniqué:(z) € T;
such thatr € C} j(,). We assumei(M) ~ 1 so that there is

only one dyadic cube at the root of the tree (thus we will only

considerj > 0).

Multiscale singular value decompositions (MSVD)The tools
we build upon are classical in multiscale geometric meathre
ory [H], especially in its intersection with harmonic argifyy An
introduction to these with an application to estimationndfin-
sic dimension of point clouds is ifl[7] and references therei

We start with some geometric objects that are associated to

S

the dyadic cubes. For eacly ;, we define the mean
1
(Cx)

and the covariance operator restrictedtg,,

¢k =Eyulzlr e Cj ] =

/ xdu(z), (2.1)
Cix

2.2)

covjr =Eu[(x —¢jp)(x —cjp) |z € Cji).

Let the rankd Singular Value Decomposition (SVD) be

COVj =~ <I>j,k2j,k<1>;k, (23)
and define the approximate local tangent space
Vik:=Vik+cik, Vie=(Pjk), (2.4)

where(®, ) denotes the span of the columns®f}, so that
V; « is the affine subspace of dimensidmparallel toV; ,, and
passing through; ... We think of {®; 1 }xer; as the geometric
analogue of scaling functions at scgleLet P; . be the associ-
ated affine projection ontd; ;. for anyx € Cjx,

Pj_,k(a:) =k (SC — Cj,k) + ¢j ks Pjyk = (I)j,kq);,k, (25)

and define a coarse approximation/of at scalej,
M = Uger; Pjx(Cjr),

which is the geometric analogue to what the projection of a
function onto a scaling function subspace is in wavelet theo
Note that eact?; . (C; 1) is the besti-dimensional planar ap-
proximation toC} ;, (in the least squares sense), which differs
from the construction irf{]3].

Multiscale geometric wavelets We introduce our wavelet en-
coding of the difference betweent; andAM, 14, for j > 0. It

is natural to define

xj = Py, (2) := Py p(2),

Again, note the difference between and its equivalent ir(]3].
Fix z € Cjy10 C Cj . The differencer;; — ; is a high-
imensional vector ilR”, however it may be decomposed into
a sum of vectors in certain well-chosen low-dimensionatepa
shared across multiple points, in a multiscale fashion. Yge p
ceed as follows: foj < J — 1 we let

QMj+1 (‘T) = PMj+1 (‘T) - PMj (‘T)
=21 — Piw(@je1) + Piw(zje1) — Pjk(@)

(2.6)

zeCip VG k).  (2.7)

= = Pjr)(@jr1 — cjk) + Pir(@jrr —x).  (2.8)
Define the wavelet subspace and translation as

Wj+l,k’ = (I — ij) ‘/j+l,k’; (29)

i1 = (I = Pjr)(citim — cjk)- (2.10)

Clearlydim W41 )» < dim V)1 = d. LetW¥;4, 1 be anor-
thonormal basis folV; ., - which we call a geometric wavelet
basis (see Fidl1). Then we may rewr[fe12.8) as

QM () = W1 Wiy o (Ti41 — Cjiw) + Witk
=0, 17 (T — wjt1). (2.11)



GWWRA = Geonetri cWavel et SMRA (X, d, ¢) {g),« } =FONT( GAWWRA, z)

// Input: . I/ Input: GWMRA structurez € M
/I X a set ofn samples from\ C R // Output: A sequenceg;,.. } of wavelet coefficients

" d_: a dlmc_en_smn for j = J down to 0
Il €: a precision parameter

// Output: Gz = (V]2 Pjz) D5.(2 —¢ja)

Il Atree T of dyadic cubeqC} .}, with local meandc; .} and end

SVD bases{®, .}, as well as a family of geometric wavelets = =| GNT( GAWRA, {g;..})

{W;} {win}

Construct a tred of dyadic cubeqC} ;. } with centers{c;  }.

J < finest scale with the-approximation property.

Letcovy, = |CJ,k|71 ZweCJ . (:E — CL],/C)(:E — CL],/C)*, and com- QMJ (:E) =V72qre + Wie

pute rankd SVD(covyx) ~ @51, forall k € Ty forj=J—1downtol

for j = .J — 1 downto0 Qrm; (%) = Voo + Wiz — Pic1e D ps; @, (T)
for kel end

z=Wo,0G0,2 + Wo,z + 3 ;50 @, (T)

Il Input: GWMRA structure, wavelet coefficien{g;,. }
/I Output: Reconstruction: at scale/

Computecov; , and®; , as above

For eachk’ € children(j, k), construct the wavelgt Fig. 3. Pseudocodes for the Forward and Inverse GWTs
basisV; ,/ and translationy, 1

end and a scale jo = jo(reach(B (x))), such that for any j > Jo,
end
Set\I/Qk = (190716 andwoyk 1= Co,k for k € To.

o= Paay @) — Y Quu@<C27¥. (214
l=jo+1

Fig. 2. Pseudocode for the construction of geometric wavelets

Geometric Wavelet Transforms (GWT). Given a GWMRA
The last termz — 2, can be closely approximated by — structure, we may compute a discrete Forward GWT for a point

Tip1 = ZlJ;lerl Q. () as the finest scalé — +oo, under x € M thatmapsitto a sequence of wavelet coefficient vectors:

general conditions. This equation splits the differenge; — o RATE -1 4 215
z; into a component ifV; 1, 4, a translation term that only Gr = (G2 @r—1: - Dar o) € Y (2.15)
depends o1}, k) and lies in the orthogonal complementigf;, whereg; , := U5 (z; — ¢j), anddy, := rank(V; ) < d.
in R” but not necessarily if¥’; 1 1/, and a projectionontdj . Note that, for a fixed precision> 0, ¢, has a maximum pos-

of a sum of differences; ., — x; at finer scales. sible length(1 + 1 log, 1)d, which is independent ob and
The two-scale relationship, by definition Qfy4, ,, , nearly optimal ind [3]. On the other hand, we may easily re-
construct the point at all scales using the GWMRA structure
Prtjr () = Pan; (2) + Qmya (2), (2.12)  and the wavelet coefficients, by a discrete Inverse GWT [Fig.

may be iterated across scales: displays the pseudocodes for both transforms).

-1 3. ATOY DATASET
2= Pa, (@) + Y Quyyy (@) + (2 — Prgy (). (2.13)
I=j We consider a toy example of2adimensionabwissroll mani-

i 100 i
The above equations allow to efficiently decompose each stc:?ld inR "' and apply the algorithm to the sampled data (6000

. : . o oints, without noise) in Fidd4. The resulting wavelet coef
along low-dimensional subspaces, leading to an efficient e ) dl g

coding algorithm (see Fi§l 2). We have therefore constdicte |f:|ents matrix Is very sparse (W'.th about 40.A) of the coeffi
. . L cients below 1 percent of the maximum magnitude). The recon-
a multiscale family of projection operatof%,, (one for each

nodeC, ) onto approximate local tangent planes and detail prO_structed manifolds also approximate the original manifedd,

jection operator€).v., ., (one for each edge) encoding the dif- with the errors decreasing quadratically with respect &desc
ferences, collectively referred to as a GWMRA structuree Th

cost of encoding the GWMRA structure is dominated by that of 4. VARIATIONS AND OPTIMIZATIONS
the scaling function$®; . }, which isO(dDe*%), and the time . ) .
complexity of the algorithm i©)(Dn log(n)) [2]. We presented a plain construction of the geometric wavédets

the data sampled from a manifold of known dimensibriNVe
Theorem 2.1(Geometric Wavelet Decompositiaret (M, g) mention several variations and optimizations, aimed aicid
be a C? manifold of dimension d in R”. Let {Pm;,Qm,,, } be  the cost of encoding the geometric wavelet dictionary and/o
a GWMRA. For any z € M, thereexistsa constant C' = C'(z)  speeding up the decay of the wavelet coefficiedts][2, 3].
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Fig. 4. Top: Reconstructions of awissroll at scales 4 (left) and 8 Fig. 5. We sampled5000 handwritten digitsl from the MNIST
(right), using6000 random samples, by the geometric wavelets. Bot-databasel]6], and used locally adaptive dimensions by kgejil%
tom left: matrix of wavelet coefficients. Theaxis indexes the points variance in each cube. Top: dimensions of all wavelet sudesp@eft)
(arranged according to the tree), and ¢hexis indexes the scales from and magnitudes (itog, , scale) of the wavelet coefficients (right); Bot-
coarse (top) to fine (bottom). Note that each block corredpdn a  tom: Approximations of a digit 1 (left) and elements of thevelat
different subset of wavelet bases. Bottom right: recomsion errors  dictionary used in the expansions (right).

as a function of scale (both ing,, scale).

Magnitude of Wavelet Coeficents

Locally adaptive dimensions[Z]. Currently we use the same
dimensiond everywhere in the tree when constructing geomet:
ric scaling functions for data sampled fromdadimensional
manifold. We may use local dimensiods;, that are adapted
to the cubeg’; ;, extending the construction to any point cloud :
(see Figh). T
Orthogonal geometric wavelets[Z]. Neither the vectors
Qm,,, (x), nor any of the terms that comprise them, are in gen
eral orthogonal across scales. On one hand, this is natncal s
M is nonlinear; on the other hand, thg.q,,, () may be al-
most parallel across scales or, the subspéicgs - may share 5. REFERENCES
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