
SVD: A Summary

1. Singular Value Decomposition: A = UΣVT =
∑

i σiuiv
T
i

Here, U,V have orthonormal columns and Σ is diagonal.

2. Matrix Norms

• Frobenius: ‖A‖F =
√∑

a2ij =
√∑

σ2
i (A)

• Spectral: ‖A‖2 = maxq:‖q‖2=1 ‖Aq‖2 = σmax(A) = σ1(A)

• Nuclear: ‖A‖∗ =
∑

σi(A)

3. Low Rank Matrix Approximation

The best rank-k approximation of a matrix A (under both the Frobenius norm

and the spectral norm) is Ak =
∑k

i=1 σiuiv
T
i .

4. Principal Component Analysis (PCA)

X̃ = X− x̄ = UΣVT

Things to keep in mind:

1. The rows of X represent the given data points, while those of X̃ represent
centered data.

2. x̄ is the center of the data set, which always lies on the best-fit k-dimensional
subspace (that minimizes the total squared orthogonal error).

3. V(:, 1 : k) is an orthonormal basis for the best-fit k-dimensional subspace.

4. The rows of X̃k = U(:, 1 : k)Σ(1 : k, 1 : k)V(:, 1 : k)T represent the coor-
dinates of the projections of the centered data onto the best-fit subspace.

5. The rows of U(:, 1 : k)Σ(1 : k, 1 : k), which also equals X̃V(:, 1 : k), are
called the top k principal components of the data, being the coordinates
of the projections on the best-fit subspace relative to the basis V(:, 1 : k).

6. The right singular vectors (i.e., columns of V) are the principal directions
in the data along which the variance of the projections onto vj is as large
as possible (and equals the corresponding singular value squared, σ2

j )

7. The number of nonzero singular values is the matrix rank of X̃, while the
number of “dominant” singular values is the “effective” rank of X̃.

In sum, PCA finds in a given data set low dimensional subspaces that

• minimize the total squared orthogonal error; and

• maximize the variances of the projections; and

• preserve the pairwise distances of the points in the data set as closely as
possible.
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Applications of SVD

• Low-rank matrix approximation

• Subspace fitting

• Data compression (including denoising, dimensionality reduction, visual-
ization)

• Much more: computing matrix pseudoinverse, solving redundant linear
systems, etc.
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