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Probability review

Dr. Guangliang Chen




This lecture is based on the following textbook sections:
» Sections 3.2 - 3.5

= Section 5.2

Outline of the presentation
= Poisson, Exponential and Gamma distributions

» Conditional distribution and expectation

Hwl: Assigned in Canvas
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The Poisson distribution

Recall that the Poisson distribution has the following pmf

Ax
flx)= ?e%, x=0,1,2,...

It can be used to model the number of occurrences of a rare event over a
time/space interval of fixed length with rate A.

D N N

a fixed interval #occurences =7

Theorem 0.1. If X ~ Pois(1), then E(X) = A and Var(X) = A.
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The Exponential distribution

Recall also that a random variable X is said to have an exponential
distribution with parameter A if it has the following pdf:

fy=1e™, x>0

It is useful for modeling waiting time for one occurrence of a rare event.

Theorem 0.2. If X ~Exp(A), then

F(x)=1-e M, Flx) = e, x>0
1 1

E(X) ==, Var(X) = —.

(X) 1 ar(X) e

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 4/28



Math 263, probability review

An important fact about this distribution is the memoryless property:
PX>s+t|X>8)=P(X>1), Vst>0

To see this (again),

P(X>s+1t, M/
P(X >5)
B F(s+ 1) B e~ (s+1)
O
=e '=F(p
=P(X>1).

PX>s+t|X>5s)=
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Theorem 0.3. If X; ~Exp(A;) and X, ~ Exp(Ay) are independent, then

M

PXi<Xo)=
(X3 2) A+

Proof.
(ee] X2
P(X; <Xy) =L L /11 e"l‘xl /126_/12)62 dx1 de
oo
= fo (1-e M%) he 222 dy,

A * A+A
Zf ﬂge_ 2%2 de—f /129_( 1+22) %, de
0 0

M M
B Al+ﬂg_/11+/12’
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Theorem 0.4. If X; ~Exp(A;),i =1,...,n are independent, then

n
min X; ~ Exp(z )L,').

1<i<n —

Proof. For any x>0,

P(min X; >x) =P(Xg>x,..., X, >Xx)

1<is<n

1
1=

P(X; > x)

~
1l
—

e~ MiE = - (EADX

Il

~
Il
—
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Consider a positive (continuous) random variable X with pdf f(x) and cdf
F(x). The hazard rate function of X is defined as follows:

Def 0.1 (Hazard rate function).

f

, >0
1-F(1)

r(t) =

To understand the meaning of r(¢), suppose X represents the operation
time of a machine (in hours). The probability that the machine will break
down during a tiny time period right after it has lasted for ¢ hours is

P(t< X <t+At, ¥/4D f(OAL
- = r(HAL.
P(X>1) 1-F(1)
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If X ~Exp(A), then

)Le_’”
r(f)= ———— =2 (constant failure rate).
1-(1-e M)
Given a hazard rate function r(f), we may uniquely reconstruct the cdf of
the random variable X. First, rewrite

dp

=9 log - Foy)
1-F() dr' 08

Integrating both sides from 0 to ¢ gives that

r(t) =

¢
f r(s)ds =—log(1— F(1))

0

From this we obtain that

F()=1-e¢ k799,
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The Gamma distribution

Def 0.2. A random variable X is said to have a Gamma distribution, with
parameters a and A, if its pdf has the following form
A(/lx)a’—le—/'lx

fX(x):T, x>0

where ©
I'a) =f x*le™*dx, a>0
0

Remark. If @ = n is an integer, then I'(n) = (n—1)!. So it is a generalization
of the factorial function from positive integers to positive real numbers.
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The Poisson-Exponential-Gamma scheme

Suppose a rare event occurs with rate A over time.

» For any t>0, let N(t) be the total number of occurrences of this
event by time . Then N(t) ~Pois(At).

» For any positive integer n, let X;,1 <i < n represent the waiting

time for the ith occurrence of the event (after the last occurrence).
Then X1,..., Xn “ Exp(1).

X
X
X

[ ]
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Let T be the total amount of waiting time for n occurrences of the event:

n
T=) X
i=1

Then
T ~ Gamma(n, A).

Proof. For any fixed t >0, the cdf of T is

Fr(t) = P(T =P(N(t) = —Oo(’mk—“
() =P(T<t)=P( (t)_n)_k;nTe )
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Differentiating Fp(f) with respect to t gives that

A(At)n_le_/lt
(n—1)!

This shows that T ~ Gamma(n,A). O

fr(® =
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Conditional distributions

For two events A, B < S with P(A) >
0, the conditional probability of B
given A is defined as

P(BNnA)

P(B|A)= PA)

For two random variables X, Y that have a joint distribution, their condi-
tional distributions can be defined similarly.
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Two discrete random variables

The conditional pmf of X given Y =y is defined as

pPxy(xy) PX=xY=y)
py(¥) P(Y =y)

pxiy(xl y )=
<~

fixed
from which one can compute the conditional cdf, expectation and variance.

Example 0.1. Let X ~ Pois(1;),Y ~ Pois(1,) be independent random
variables. Find E(X| X+ Y =n).
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Solution. We start by computing the conditional pmf of X given X+Y = n:
For each x=0,1,...,n,

P(X:x,X+Y:n)_P(X=x,Y=n—x)

PX=x|X+Y=n)=

P(X+Y=n = PX+Y=n)
_PX=x)P(Y=n-x) _ n( M )x( Ao )"—x
B P(X+Y =n) Tx) A+ WA+

This shows that

A
X|X+Y=n ~ Bln p=

Therefore,

EX|X+Y=n]=
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Two continuous random variables

The conditional pdf of X given Y =y is defined as

fX,Y(x,)’)
fr(»

from which one can compute the conditional cdf, expectation and variance.

fxiv(xly) =

Example 0.2. Consider the following joint distribution

1
f(x,y):gxy, O<x<y<2

Find E(X|Y =y).
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Solution. By direct calculation,

V1 1,
fy(y)=f —xydx=-y>, 0<y<2
0 2 4

1
=X 2
2—y=—x, O<x<y

fxiv(xly =
| iys yg

EX|Y = )—fyx ixdx—g O
_y_O y2 _3y.

Let E(X|Y) be the expression of E(X | Y = y) with each y replaced by Y.
In the above example,

2
E(X| Y)=§Y.

Note that E(X | Y) is a random variable (dependent on Y).
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Theorem 0.5. For any two random variables X,Y with a joint distribution,

E(X)=EEX|Y)).

Proof. We prove this result for the case of two discrete random variables:

EEX|Y)=) EX|Y=yP(Y =y
y
=) Y xPX=x|Y=yP({Y =y)
y X
=Y xY P(X=x|Y =y)P(Y =)
x Y

=) xP(X =x)=E(X).
X
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Remark. When Y is discrete, this formula can be interpreted as follows:

EX) = ECEX[Y))
~—— —_——
overall mean group mean
[ —
further averaged across groups
Y
A
Yl e eee ee
Yol eeeeee oocoeo
LALS o0 e o000 ooo
I I I
E(X]Y = y3) E(X]Y =y2) EX]Y =)
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Example 0.3 (cont'd).
16

2 8

Verify this result by using the marginal pdf of X instead.
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Example 0.4. Let X3, X,,... be a sequence of iid random variables with
the same mean p=E(X;) and variance 0% =Var(X;). Let N be a positive,
integer-valued random variable that is independent of all X;. Define

N
S=) X;
i=1
which is a compound random variable. Prove that

E(S) = u-E(N).

Proof.
E(S) =E[E(S| N)) =E(uN) = u-E(N).
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Example 0.5. Let
X;~Exp(A), 1l<isn

be independent random variables, and N another random variable that is
independent of all X; and has the following distribution

P(N=i)=p;, 1l<isn.

Let
Y =Xy,

which is called a hyperexponential random variable. Find E(Y).
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Solution.
() = BEOt | M) =E( -] =Y opi= 3 28
An) 3 Ai oA
We can also determine the density of Y: For any ¢ >0,

n
PY>t)=PXy>1)=) P(Xn>t|N=i)P(N=1i)
i=1

(&>HM#WW;U
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It follows that

n
Fy(=1-} pie”"!
i=1

and ;
fr(= Z pi/lie_’lit.
i=1

The hazard rate function is

t A -Ait oo
r(t) = [ _ Lpikie = min A;.

T 1-F(t) Y pje Mt I<i<n

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

25/28



Math 263, probability review

Theorem 0.6. For any random variables X, Y that have a joint distribution,

Var(X) =EVVar(X | Y)) +Var(E(X | V).

Proof.

E(Var(X | Y)) =E(E(X*| V) -E(X | V)*) =E(X*) -E(E(X | Y)?)
Var(E(X | V) =E(E(X | Y)?) - (EEX | V)))* =E(E(X | Y)?) - E(X))*.
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Remark. When Y is discrete, this formula can be interpreted as a decom-
position of the total variance of X into within-group and between-group

variances:
Y

A
Yl e eee ee
Yal e0e0e000 o000
CALS e o o060 ooo

-- - -- -
X
E(X|Y =y3) E(X]Y =y2) E(X|Y =)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 27/28



Math 263, probability review

Example 0.6 (Compound random variable, cont'd). For

N
S=Y Xi
i=1
we have
E(S|N) =uN — Var(E(S| N)) = p?Var(N)
=o’N — E(Var(S| N)) = o’E(N)

N
Var(S|N)=Var | ) X;| N

i=1

Accordingly,
Var(S) = p®Var(N) + 0>E(N)
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