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Special continuous distributions

Introduction

In this lecture we cover the following special continuous distributions

• Uniform

• Normal

• Exponential

• Gamma (and Chi-square)
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Special continuous distributions

... by following the same treatment plan (as for discrete distributions):

• Examples

• Definition (via pdf)

• Expected value

• Variance

• Other useful properties (if any)
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Special continuous distributions

The Uniform distribution

Def 0.1 (X ∼ Unif(a, b)). A con-
tinuous random variable X is said
to have a uniform distribution with
parameters a, b if it has the fol-
lowing probability density function
(pdf):

f(x) =


1
b−a , a < x < b

0, otherwise

a b

1
b−a

x

b
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Special continuous distributions

Remark. We have already seen an example of the uniform distribution

fX(x) = 1, 0 < x < 1

We can denote this by X ∼ Unif(0, 1). We have also computed the
following quantities:

• cdf: FX(x) = x, 0 < x < 1

• expected value: E(X) = 1
2

• variance: Var(X) = 1
12
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Special continuous distributions

Example 0.1. Suppose a bus arrives at a stop uniformly random between
noon and 12:15pm, and you arrive at the bus stop exactly at noon. What
is the probability that you will wait

(1) no more than 5 minutes or

(2) between 5 and 10 minutes, or

(3) more than 10 minutes?
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Special continuous distributions

Theorem 0.1. If X ∼ Unif(a, b), then its cdf is

F (x) = x− a
b− a

, a < x < b.

and the mean and variance are

E(X) = a+ b

2 , Var(X) = (b− a)2

12
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Special continuous distributions

The Normal distribution
Def 0.2 (X ∼ N(µ, σ2)). We say that a continuous random variable X
has a normal distribution with parameters µ, σ if it has the following pdf:

f(x;µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2 , −∞ < x <∞
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(1) The normal curves are all sym-
metric, unimodal, and bell-shaped;
(2) E(X) = µ and Var(X) = σ2;
(3) N(0, 1) is called the standard
normal distribution:
f(x; 0, 1) = 1√

2πe
−x2/2, x ∈ R
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Special continuous distributions

The Normal distributions are fundamental in probability and statistics:

• Empirically, measurements of a large population often have normal
distributions, such as

– repeated measurements of the same object,

– heights of a large population, and

– test scores of a large class.

• Mathematically, one can show that the sums of many independent
random variables (individually not necessarily normally distributed)
have approximate normal distributions (this result is called the Cen-
tral Limit Theorem)
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Special continuous distributions
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Special continuous distributions

Bad news – cdfs of normal distributions do not have explicit formulas: For
any given point x0,

F (x0;µ, σ) = P (X < x0) =
∫ x0

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx

Through a change of variable

z = x− µ
σ

(
and a corresponding change of limit z0 = x0 − µ

σ

)
we can obtain that

F (x0;µ, σ) =
∫ z0

−∞

1√
2π
e−

z2
2 dz = F (z0; 0, 1).

Good news – All cdf calculations for normal distributions can be reduced
to similar calculations for the standard normal.
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Special continuous distributions

Displaying the cdf of N(0, 1)

The cdf of standard normal Φ(x) ≡ F (x; 0, 1) can be numerically calculated
through a computer:
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and displayed in a (huge) table, called standard normal table (linked on
http://www.sjsu.edu/faculty/guangliang.chen/Math161a.html).
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Special continuous distributions

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 14/50



Special continuous distributions

Example 0.2. Suppose Z ∼ N(0, 1). Find

• P (Z < 0) =

• P (Z < −1.3) =

• P (Z > 1.3) =

• P (−2.5 < Z < 1.5) =

• P (−1 < Z < 1) = .6826

• P (−2 < Z < 2) = .9544

• P (−3 < Z < 3) = .9974
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Special continuous distributions

Percentiles

Def 0.3. For any 0 < p < 1, we de-
fine the (100p)th percentile of the
standard normal random variable Z
as the cutoff z such that

p = P (Z < z) = Φ(z).

Alternatively, we may write

z = Φ−1(p).
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Special continuous distributions

Example 0.3. Find the 25th (first quartile), 50th (median), 75th (third
quartile) percentiles of Z ∼ N(0, 1).
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Special continuous distributions

Critical values

Def 0.4. For 0 < α < 1, we define
the zα critical value as

P (Z > zα) = α.

Remark. zα is also the 100(1−α)th
percentile:

P (Z < zα) = 1− α.
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Special continuous distributions

Example 0.4. Find zα for α = .01, .05, .1
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Special continuous distributions

Standardization

Def 0.5. Let X be a random variable with mean µ and standard deviation
σ). Its standardized form is defined as

Z = X − µ
σ

.

Remark. Standardized random variables always have zero mean and unit
variance:

E(Z) = E
[ 1
σ

(X − µ)
]

= 1
σ

(E(X)− µ) = 0

Var(Z) = 1
σ2 Var(X) = 1.
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Special continuous distributions

Proposition 0.2. If X ∼ N(µ, σ2), then

Z = X − µ
σ

∼ N(0, 1).

Correspondingly,

FX(x;µ, σ) = P (X ≤ x) = P

(
Z ≤ x− µ

σ

)
= Φ

(
x− µ
σ

)
.

Remark. The normality part of the theorem follows from the fact that any
linear transformation of a normal random variable is still normal.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 21/50



Special continuous distributions

Example 0.5. Suppose X ∼ N(5, 32). Verify that

P (X < −1) = 0.0228
P (X > 4.1) = 0.6179

P (2 < X < 5.3) = 0.3811
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Special continuous distributions

Example 0.6. Suppose X ∼ N(5, 32). Find the 90th percentile.
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Special continuous distributions

The 68-95-99.7 rule

Interpretation: Let X ∼ N(µ, σ2).
Then the probabilities of X staying
within one/two/three standard devi-
ation around the center are roughly
68%, 95%, 99.7%, respectively:

P (µ− σ < X < µ+ σ) ≈ .68
P (µ− 2σ < X < µ+ 2σ) ≈ .95
P (µ− 3σ < X < µ+ 3σ) ≈ .997

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 24/50



Special continuous distributions
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Special continuous distributions

Normal approximation to binomial

Theorem 0.3. Let X ∼ B(n, p). Then for large n such that

np ≥ 10, n(1− p) ≥ 10,

we have
X

approx∼ N(µ = np, σ2 = np(1− p)),

or equivalently,
X − np√
np(1− p)

approx∼ N(0, 1).
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Special continuous distributions
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How to make sense of the theorem (we use x = 22 as an example):

P (X = 22)︸ ︷︷ ︸
B(n=40, p=0.5)

≈ P (21.5 < X < 22.5)︸ ︷︷ ︸
N(np, np(1−p))
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Special continuous distributions

Example 0.7. Use the normal approximation to find the probability of
getting exactly 22 heads when tossing a fair coin 40 times.
Answer: Binomial 0.1031, Normal 0.1044
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Special continuous distributions

Example 0.8 (Cont’d). What about no more than 22 heads?
Answer: Binomial 0.7852, Normal approximation 0.7357, and
Normal+continuity correction 0.7852
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Special continuous distributions

Remark. In the preceding example, the normal approximation to binomial
(with continuity correction) works in the following ways:

P (X = 22) ≈ P (21.5 < X < 22.5)
P (X ≤ 22) ≈ P (X < 22.5)
P (X < 22) = P (X ≤ 21) ≈ P (X < 21.5)
P (X ≥ 22) ≈ P (X > 21.5)
P (X > 22) = P (X ≥ 23) ≈ P (X > 22.5)
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Special continuous distributions

The Exponential distribution
Exponential distributions are very useful for modeling the waiting time for
a rare event, such as the arrival of a hurricane and the breakdown of an
electronic device such as light bulb.

Def 0.6 (X ∼ Exp(λ)). A con-
tinuous random variable X is said
to have an exponential distribution
with parameter λ if its pdf has the
following form

f(x) = λe−λx, x > 0 0 1 2 3 4 5
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Special continuous distributions

To understand what the parameter λ represents, we first need to find the
expected value of X ∼ Exp(λ).

Theorem 0.4. If X ∼ Exp(λ), then

E(X) = 1
λ
, Var(X) = 1

λ2 .

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 32/50



Special continuous distributions

Remark. The preceding theorem indicates that 1
λ is the mean waiting time

for a rare event to occur and thus λ is the rate at which the event occurs
(and it is the same parameter lambda of the Poisson distribution).

| b b |b

X (#occurrences) ∼ Pois(λ)

T1 ∼Exp(λ) T2 ∼Exp(λ)

0 1

b
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Special continuous distributions

Example 0.9. Suppose that the life time of a certain brand of light bulbs
is exponentially distributed with an average of 1, 000 hours. What is the
probability that a new light bulb can exceed this amount of time? What
about between 1, 000 and 2, 000 hours?
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Special continuous distributions

Proposition 0.5. Let X ∼ Exp(λ). Then the cdf of X is

FX(x) = 1− e−λx, x > 0
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Special continuous distributions

The complementary cdf function

Def 0.7. The complementary cdf
of a random variable X is defined as

F̄ (x) = P (X > x) = 1− F (x)

Remark. If X ∼ Exp(λ), then

F̄ (x) = e−λx, x > 0.

It can be thought of as the proba-
bility of lasting longer than x hours
for a light bulb.

x

f(x)
b

F (x) F̄ (x)
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Special continuous distributions

Theorem 0.6 (The memoryless property). If X ∼ Exp(λ), then

P (X > t0 + t | X > t0) = P (X > t), for any t0, t > 0.

Interpretation (in the setting of light bulbs):

• P (X > t): probability that a new light bulb can exceed t hours

• P (X > t0 + t | X > t0): probability that a light bulb can last for t
more hours given that it has worked for t0 hours.

Remark. The exponential distribution is the only continuous distribution
that has the memoryless property.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 37/50



Special continuous distributions

Example 0.10. Jones figures that the total number of thousands of miles
that an auto can be driven before it would need to be junked is an
exponential random variable with parameter λ = 1/20. Smith has a used
car that he claims has been driven only 10,000 miles. If Jones purchases
the car, what is the probability that she would get at least 20,000 additional
miles out of it?
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Special continuous distributions

Example 0.11 (Cont’d). Repeat under the assumption that the lifetime
mileage of the car is not exponentially distributed but rather is (in thousands
of miles) uniformly distributed over (0, 40).
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Special continuous distributions

The Gamma distribution
The Gamma distribution is defined based on the template function

g(x) = xα−1e−x, x > 0,

which has a peak at x = α− 1 when α > 1 and a long right tail:

g′(x) = xα−2e−x(α− 1− x)

In order to use g(x) to produce a distribution, we need to normalize it
carefully:

1 =
∫ ∞

0
Cxα−1e−x dx = C ·

∫ ∞
0

xα−1e−x dx︸ ︷︷ ︸
Γ(α)

−→ C = 1
Γ(α) .
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Special continuous distributions

The Gamma function

Def 0.8. The Gamma function is
a function Γ : (0,∞) 7→ (0,∞) with

Γ(α) =
∫ ∞

0
xα−1e−x dx, α > 0

(The Gamma function can be seen
as a way to generalize factorials from
integers to non-integers, e.g., 2.4!)

Properties:

• Γ(1) = 1

• For any α > 0, Γ(α + 1) =
α · Γ(α)

• For any positive integer n,
Γ(n) = (n− 1)!

• Γ(1
2) =

√
π
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Special continuous distributions

Graph of the Gamma function

https://www.medcalc.org/manual/gamma_function.php
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Special continuous distributions

We introduce a second parameter (β) to make the Gamma distribution
more flexible.

From
1 =

∫ ∞
0

1
Γ(α)x

α−1e−x dx,

by letting x = y/β for some β > 0, we have

1 =
∫ ∞

0

1
Γ(α)

(
y

β

)α−1
e−y/β

1
β

dy

=
∫ ∞

0

1
βα Γ(α)y

α−1e−y/β︸ ︷︷ ︸
two-parameter Gamma density

dy
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Special continuous distributions

The two-parameter Gamma distribution

Def 0.9 (X ∼ Gamma(α, β)). A random variable X is said to have a
(two-parameter) Gamma distribution with parameters α, β if it has a
pdf of the form

f(x;α, β) = 1
βα Γ(α)x

α−1e−x/β, x > 0

Remark. If α = 1, then Gamma(α, β) reduces to Exp(λ = 1/β).

Theorem 0.7. If X ∼ Gamma(α, β), then

E(X) = αβ, Var(X) = αβ2
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Special continuous distributions

(β is a scale parameter)
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Special continuous distributions

Application of the Gamma distribution

Consider the experiment of counting the occurrences of a rare event (such
as hurricane) that occurs with rate λ:

| b b |b

X (#occurrences) ∼ Pois(λ)

T1 ∼Exp(λ) T2 ∼Exp(λ)

0 1

b

It is already known that

• The total number of occurrences of the event in a unit interval of
time has a Poisson distribution: X ∼ Pois(λ);
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Special continuous distributions

• The separate waiting times for different occurrences of the event,
T1, T2, . . ., are iid Exp(λ).

It turns out that the total waiting time for n occurrences of the event has
a Gamma distribution:

T = T1 + · · ·+ Tn ∼ Gamma(α = n, β = 1/λ)

This implies that

E(T ) = E(T1) + · · ·+ E(Tn) = n · 1
λ

= n

λ

Var(T ) = Var(T1) + · · ·+ Var(Tn) = n · 1
λ2 = n

λ2
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Special continuous distributions

The chi-squared distribution

Another special case of the Gamma distribution is the chi-squared distri-
bution with parameter k, denoted as χ2(k) and sometimes also χ2

k:

Gamma(α = k

2 , β = 2) = χ2(k) ←− k is called #degrees of freedom

It is also the distribution ofX = Z2
1 +· · ·+Z2

k where Z1, . . . , Zk
iid∼ N(0, 1).

The pdf of the χ2(k) distribution is the following:

f(x) = 1
2k/2 Γ(k/2)

x(k/2)−1e−x/2, x > 0

Its mean and variance are E(X) = k and Var(X) = 2k.
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Special continuous distributions
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Special continuous distributions

B(n, p)Bernoulli(p)

n = 1
n → ∞, p → 0

np = λ Pois(λ)
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n −→ ∞
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