San José State University Computer Science Department CS 256, Topics in Artificial Intelligence, Section 1, Spring 2022

Course and Contact Information

Instructor: H. Chris Tseng

Office Location: MH213

Telephone: (408) 924-7255

Email: chris.tseng@sjsu.edu

Office Hours: Tue/Thur: 8:45 – 9:15 PM and Sat 4:30 – 5:00 PM or email

Class Days/Time: Tue/Thur 7:30 – 8:45 PM

Classroom: Online

Prerequisites: CS 156 and Graduate standing. Allowed Declared Major: Computer Science,

Bioinformatics, Data Science. Or instructor consent.

Course Format

Technology Intensive, Hybrid, and Online Courses

This course combines theories with hands-on assignments. Students are expected to work in teams to accomplish machine learning project(s) using open source technologies. Students are expected to be proficient in Python.

Faculty Web Page and MYSJSU Messaging

Course materials such as syllabus, handouts, notes, assignment instructions, etc. can be found on the <u>Canvas Learning Management System course login website</u> at http://sjsu.instructure.com. You are responsible for regularly checking with the messaging system through MySJSU at http://my.sjsu.edu to learn of any updates.

Course Description

Catalog description: Introduction to topics in artificial intelligence such as problem solving methods, game playing, understanding natural languages, pattern recognition, computer vision, and the general problem of representing knowledge. Students will be expected to use LISP.

Course Learning Outcomes (CLO)

This course aims to introduce students to the underlying theories and applications for AI/Machine Learning. Upon successful completion of this course, students will be able to:

- Explain regression and classification concepts, modeling principles, and evaluation metrics.
- Use software tools such as Google Colaboratory, Matplotlib, Scitkit-Learn, Pandas, Numpy, and PyTorch to analyze and visualize data.

- Understand and apply Neural Networks and Deep Learning methodologies for natural languages, pattern recognition, and summarization problems.
- Build, evaluate, and refine Neural Networks models for prediction and identification from data sets.
- Design, implement, and present a team project with applications

Required Texts/Readings

Textbook

No textbook is needed. Class material will be posted on the Canvas account under http://sjsu.instructure.com.

References

- 1. <u>Introduction to Machine Learning with Python</u>, (https://www.amazon.com/exec/obidos/ASIN/1449369413/ref=nosim/sjsu-20</u>) Andreas C. Müller and Sarah Guido, 2016, O'Reilly.
- 2. <u>Deep Learning (Adaptive Computation and Machine Learning)</u>, (https://www.amazon.com/exec/obidos/ASIN/0262035618/ref=nosim/sjsu-20) Goodfellow, Bengio, etc., 2016, The MIT Press
- 3. <u>Mathematics for Machine Learning</u>, (https://mml-book.github.io/book/mml-book.pdf) Deisenroth, Faisal, and Ong, 2020, Cambridge University Press.

Additional Readings

A list of additional readings will be provided on the Canvas page associated with this class under http://sjsu.instructure.com.

Other technology requirements / equipment / material

You will be required to have a wireless-network ready laptop computer to participate in the class. You will also need to use your own laptop with wireless access to submit your assignment inside the SJSU campus. Your laptop needs to have wireless capability and you need to register a free wireless account at https://one.sjsu.edu/. The instructor is not responsible for providing either laptops or alternatives.

Course Requirements and Assignments

Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus.

a. Projects:

A final team project will be provided for you to practice Neural Networks principles. Self-selected teams of 3-4 people will work together to solve some selected problems discussed in the course.

This team project will be a collaborated group project. You are free to choose your own partners but you cannot change your partners in the middle of the project. Progressive design and implementation of the term project will be done through assignments as part of the learning objectives.

b. Exams:

There will be one midterm and one final exam.

c. Quizzes:

There will be 1-2 quizzes and each will be counted as a HW.

d. Homework:

There will be 5-7 HWs. Quizzes and intermediate milestones of your team project will also be counted as HW grades.

e. Tentative course exam and HW due dates:

(Please note that this is "subject to change at the discretion of the instructor")

HW/Quiz/Project milestones: One of these will be assigned about once a week.

Midterm: Thursday, March 24, 2022

Final: (Per SJSU final schedule) 7:45 PM, Tuesday, May 19, 2022.

Grading Information

Grades:

HW assignments and quizzes	20 %
Midterm	25 %
Final Team Project	30 %
Final	25 %

Determination of Grades

Grades will be assigned as described below. These intervals, however, may change (i.e., either way!) according to the performance of the class as a whole. C- is a passing grade.

- A: [93, 100]
- A-: [90, 93)
- B+: [87, 90)
- B: [83, 87)
- B-: [80, 83)
- C+: [75, 80)
- C: [70, 75)
- C-: [65, 70)
- D+: [60, 65)
- D: [55, 60)
- D-: [50, 55)
- F: [0, 50)

Classroom Protocol

You are expected to attend classes. If you cannot attend, it is your responsibility to get a copy of the lecture notes and class announcements from a reliable classmate. The instructor reserves the right to ignore frivolous or inappropriate e-mail inquiries. Students are expected to participate actively to provide improvement to presentations by other classmates.

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on the Office of Graduate and Undergraduate Programs' Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/. Make sure to review these policies and resources.

CS 256, Topics in AI, Section 1, Spring, 2022 Course Schedule

Online Zoom link: https://sjsu.zoom.us/j/81229500922 (Need to login to your SJSU account to gain access to Zoom. All students must turn on the video to participate)

The schedule is subject to change at the discretion of the instructor.

Course Schedule

Week	Date	Topics, Readings, Assignments, Deadlines
1	1/27/2022	Introduction; Google Colaboratory
1		
2	2/1/2022	Python Review
2	2/3/2022	EDA with Pandas and Numpy; HW#1 due
3	2/8/2022	Visualization with Pandas, Matplotlib, and Seaborn
3	2/10/2022	Introduction to Supervised Learning; Scikit-Learn; Linear Regression; HW#2 due
4	2/15/2022	Modeling and feature selection; Feature engineering; One-hot-encoding
4	2/17/2022	Logistic Regression; Overfitting and Underfitting; HW#3 due
5	2/22/2022	Regularization; Bias and Variance tradeoff
5	2/24/2022	Introduction to NLP; Count Vectorization HW#4 due
6	3/1/2022	Stemming and Lemmatization; TF-ID
6	3/3/2022	Feedforward Neural Network; Calculus for machine learning;HW#5 due
7	3/8/2022	Back propagation
7	3/10/2022	Neural Networks hidden layer units and depth
8	3/15/2022	learning rate and convergence; Quiz #1
8	3/17/2022	Application of Neural Networks to digit recognition problems
9	3/22/2022	Keras for Neural Networks; Review; Final project team forming
9	3/24/2022	midterm
10	3/29/2022	No class (Spring break)
10	3/31/2022	No class (Spring break)
11	4/5/2022	Refining Neural Networks models; Hyperparamenters; Grid searching;
11	4/7/2022	Classification problems; HW# 6 due
12	4/12/2022	Classification metrics: Confusion matrix and classification report

Week	Date	Topics, Readings, Assignments, Deadlines
12	4/14/2022	Final project milestone 1 due (presentation)
13	4/19/2022	Convolutional Neural Networks
13	4/21/2022	Keras for Convolutional Neural Networks
14	4/26/2022	Applications of Neural Networks to time series data and image recognition problems
14	4/28/2022	Final project milestone 2 due (presentation)
15	5/3/2022	Recurrent Neural Networks
15	5/5/2022	Image classification with PyTorch
16	5/10/2022	Time Series Prediction with LSTM Recurrent Neural Networks
16	5/12/2022	Final team project presentation
Final	7:45 PM,	Final exam
Exam	Tuesday,	
	May 19,	
	2022	